Computing the order of points on an elliptic curve modulo N is as difficult as factoring N

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the order of points on an elliptic curve modulo N is as difficult as factoring N

K e y w o r d s P u b l i c k e y cryptography, Elliptic curves, Costly computational problems.

متن کامل

Factoring integers and computing elliptic curve rational points

We conjecturally relate via a polynomial-time reduction, a subproblem of integer factoring to the problem of computing the MordellWeil group of an elliptic curve from a special family. This raises an interesting question about the growth of the height of the generators of the above group with respect to the discriminant of the elliptic curve. We gather numerical evidence to shed light on this b...

متن کامل

Equivalence of Counting the Number of Points on Elliptic Curve over the Ring Zn and Factoring n

1 I n t r o d u c t i o n Elliptic curves can be applied to public-key cryptosystems, and as such several schemes have been proposed [3, 4, 5, 6, 9, 11]. There are two typical elliptic curve cryptosystems: E1Gamal-type scheme [4, 11] and RSA-type schemes [3, 5, 6]. The security of the EIGamal-type elliptic curve cryptosystem is based on the difficulty of solving a discrete logarithm over ellipt...

متن کامل

ON THE ORDER OF a MODULO n, ON AVERAGE

Let a > 1 be an integer. Denote by la(n) the multiplicative order of a modulo integer n ≥ 1. We prove that there is a positive constant δ such that if x1−δ = o(y), then 1 y ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2001

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(00)00159-2